Find a closed form for the following integral

Find int (ln(x))^2/(1+x)^2 from 0 to inf To evaluate the integral: [ I = \int_{0}^{\infty} \frac{(\ln x)^2}{(1 + x)^2} , dx ] we can use the method of differentiation under the integral sign. Here’s a step-by-step approach: Step 1: Define a Parameterized Integral Consider the more general integral: [ I(k) = \int_{0}^{\infty} \frac{x^k}{(1 + x)^2} … Continue reading Find a closed form for the following integral